H2, N2, and CH4 Gas Adsorption in Zeolitic Imidazolate Framework-95 and -100: Ab Initio Based Grand Canonical Monte Carlo Simulations

نویسندگان

  • Muthuramalingam Prakash
  • Navid Sakhavand
  • Rouzbeh Shahsavari
چکیده

A multiscale approach based on ab initio and grand canonical Monte Carlo (GCMC) simulations is used to report the H2, N2, and CH4 uptake behaviors of two zeolitic imidazolate frameworks (ZIFs), ZIF-95 and -100, with exceptionally large and complex colossal cages. The force fields describing the weak interactions between the gas molecules and ZIFs in GCMC simulations are based on ab initio MP2 level of theory aimed at accurately describing the London dispersions. We report the total and excess gas uptakes up to 100 bar at 77 and 300 K. Our results unravel the interplay between the uptake amount, pore volume, guest molecule size, temperature, chlorine functional group, and isosteric heat of adsorption in ZIFs. We found that while the uptake capacity of ZIF-100 outperforms ZIF-95 for small molecules (H2), ZIF-95 offers a superior adsorption capacity for large molecules (CH4). Moderately sized molecules (N2) exhibit a more complex uptake behavior depending on the temperature. Furthermore, we show that the induced dipole interactions, such as those caused by −Cl functional groups, play a vital role on gas adsorption behaviors. This work provides the first report on the N2 and CH4 uptake of ZIF-95 and -100 using ab initio based GCMC simulations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Separation-Based Adsorption of H2 from Binary Mixtures inside Single, Double, Triple Walled Boron-Nitride Nanotubes: A Grand- Canonical Monte-Carlo Study

This study investigates the separation based on adsorption of the binary gas mixture of hydrogen withbiogas (gases: CO2, CH4, O2, N2) and inert gases (gases: He, Ne, and Ar) using single-walled ((7,7), (15,15),(29,29), (44,44), (58,58) and (73,73) SWBNNTs), double-walled ((11,11)@(15,15), (7,7)@(22,22) DWBNNTs)and triple walled ((8,8)@(11,11)@(15,15) and (7,7)@(15,15)@(22,22) ...

متن کامل

Storage and separation of CO2 and CH4 in boron imidazolate frameworks: a theoretical study from Monte Carlo simulation

In this work, the storage of pure CO2 and CH4 gases and separation of their binary mixture in new type of nanostructured materials called boron imidazolate frameworks (BIFs) have been investigated using atomistic simulation to provide information for material selection in adsorbent designs. Adsorption isotherms and adsorption selectivities were computed using grand canonical Monte Carlo (GCMC)....

متن کامل

Tuning the Interplay between Selectivity and Permeability of ZIF-7 Mixed Matrix Membranes.

Nanoparticles of zeolitic imidazolate framework-7 (nZIF-7) were blended with poly(ether imide) (PEI) to fabricate a new mixed-matrix membrane (nZIF-7/PEI). nZIF-7 was chosen in order to demonstrate the power of postsynthetic modification (PSM) by linker exchange of benzimidazolate to benzotriazolate for tuning the permeability and selectivity properties of a resulting membrane (PSM-nZIF-7/PEI)....

متن کامل

Modeling and Comparison of Optimized Isotherm Models for H2, N2, CO, CH4 and CO2 Adsorption Using Cuckoo Search Optimization Algorithm

In this study, modeling of hydrogen, nitrogen, carbon monoxide, methane and carbon dioxide sorption on UTSA-16 framework extrudates in the pressure swing adsorption process was carried out. The pure gas adsorption of these gases at the pressure range (0 to 80) bars at (298, 313, and 338) K have also been measured in a fixed bed. Langmuir, Toth, Sips, UNILAN, Virial and Dubinin-Astakhov adsorpti...

متن کامل

High selectivity ZIF-93 hollow fiber membranes for gas separation.

Zeolitic imidazolate framework-93 (ZIF-93) continuous membranes were synthesized on the inner side of P84 co-polyimide hollow fiber supports by microfluidics. MOFs and polymers showed high compatibility and the membrane exhibited H2-CH4 and CO2-CH4 separation selectivities of 97 (100 °C) and 17 (35 °C), respectively.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013